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VISCOELASTICITY AND THERMAL ANALYSIS
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Abstract

DMA is a tool for studying linear viscoelastic behavior of polymers over ranges of temperature and

frequency. Viscoelasticity has its origin in the complex molecular behavior of the polymer. A theo-

retical master curve has been constructed, based predominantly on thermodynamic theories of poly-

mer molecular conformations, and their intermolecular cooperativity.
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Conformation of a polymer molecule

Consider a polymer molecule to be a chain of segments like a string of pearls. In the

chain, a segment is connected to the next neighbor by a covalent bond at an angle. This

bond can rotate about the axis of the adjacent bond. Because these bonds are not straight,

a polymer chain can take a large number of shapes, conformations. We call each ‘pearl’ a

conformer; it is the smallest unit to make up the conformation of a whole chain. In a typi-

cal hydrocarbon chain, one of the three tetrahedral links can take three different angles of

rotation. When these bonds are in the same plane, it is in the trans conformation. The two

other angles are called gauche. A specific sequence of bond angles in the whole chain

makes one specific conformation. If there are N conformers in a chain, each capable of

assuming three different bond angles, then there are N3 possible conformations this poly-

mer chain can assume. For each conformation, there is one unique distance between the

two ends of the chain. The statistical probability for the end-to-end distance is the statisti-

cal probability for the conformations of the chain. If the potential energy for the gauche is

at the same level as that for the trans conformation, the distribution of conformations will

be Gaussian, following the law of the normal distribution. The thermodynamic probabil-

ity is at the maximum. The thermodynamic free energy to describe the probability is to

take its logarithm. This is Gibbs free energy, H – TS, where H is the enthalpy, T is the

temperature, and S is the entropy. The term entropy is in the form to describe the proba-

bility such that S=klnP, where k is the Boltzmann constant, and P the conformational

probability. The mean of the square of the population for each conformation describes the

most probable conformation in the Gaussian coil. The mean of the square of end-to-end

distances, <r2>, describes the most probable dimension of the random coil.
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The distribution of conformations is perturbed when an external force is im-

posed. Any disturbances will make the conformational probability less than the maxi-

mum, and the entropy is decreased. The distribution of the end-to-end distance is no

longer spherically symmetrical, but is elongated in the direction of the applied force,

accompanied by the contraction in the two directions perpendicular to the force. It

can be shown that a polymer with N tetrahedral bond of length l will have the mean

square end-to-end distance of 2Nl2 [1]. Some polymers have segments that are not tet-

rahedral. A paraphenylene linkage is co-linear. Even though it can rotate around the

bond easily, the rotation does not change the molecular conformation, which is a rigid

rod. Other polymers contain the ether linkage, –C–O–C–, which has a bond angle of

110°, so the rotation affects the molecular conformation. This link does not have de-

finitive angles for low energy state like the tetrahedral bond, so the polymer is a clas-

sic freely rotating chain with a fixed bond angle. The mean square of this type of a

chain molecule is also equal to 2Nl2. In thermal analysis (TA) and dynamic mechani-

cal analysis (DMA), studies are made on how the molecular shapes or conformations

depend on temperature and stress. The two techniques can complement each other for

the analysis of the structure/property relationship in polymers.

Polymer molecule in solution

Only in the very dilute solution, a polymer molecule is in a truly unperturbed state.

This is the state of maximum entropy. Strictly speaking, the solvent must be the theta

solvent that has zero heat of mixing. In the theta condition, the interfacial potential

energy between the solvent to polymer segments is equal to that between the polymer

segments. This means there is only the entropy change during dissolution. The aver-

age volume or space occupied by a random coil of a polymer chain, as it is spread out

in the dilute solution, is very large as compared to that in the condensed state. The re-

laxed state contains a large volume of solvent.

The relative viscosity (normalized relative to the solvent viscosity) is propor-

tional to this molecular volume, multiplied by the number of the molecules per cm3 in

the solution, according to the Stokes-Einstein formula. For the theta condition, the

average volume occupied by a polymer molecule is proportional to M3/2, as the aver-

age diameter is ~M1/2. In general, the diameter is proportional to Mν, so the volume is

proportional to M3ν. In good solvent, ν is greater than 0.5, as the molecule swells. The

number of molecules in 1 cm3 of the solution is c/M, where c is the concentration in

g cm–3. So the relative viscosity is proportional to M3ν–1. The intrinsic viscosity, [η],

is the relative viscosity divided by the concentration (the reduced viscosity) extrapo-

lated to the infinite dilution. It is proportional to Ma as described by Mark-Houwink

formula. Thus a in the latter is 3ν–1. The volume can be calculated from c[η]. This

volume is called the hydrodynamic volume. The hydrodynamic volume divided by

the molecular weight is the hydrodynamic specific volume of the random coil. The

reciprocal is the concentration within the coil, c*. When c<c*, polymer hydrodynamic

volume do not fill the solution, i.e., they are still isolated islands. But the polymer

coils touch the neighbors from time to time, more often at higher concentrations.
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Even at this low concentration, polymer conformation is no longer at maximum, and

the entropic change is manifest in the increase of the reduced viscosity as described

by the Huggins equation [2].

At the concentration of c*, the islands of the chains begin to touch each other.

There are no more islands of individual chains, but the solution is nominally homoge-

neously filled by polymer segments. Actually, the density of a random coil is not uni-

form but it is higher toward the center. The average density of the coil is proportional

to N–1/2 for the theta solvent, or N–ν in general. The longer the chain, lower the den-

sity. At this point, the viscosity is no longer proportional to M0.5~M3ν–1, but typically

to M1~M2ν [3, 4]. The latter is typical of the free-draining worms, such as the Rouse

model. Below, we present a brief description of the analysis we completed and sub-

mitting for publication [5]. This worm is randomly shaped, and becomes more and

more slender with increase in concentration. By so doing, the worms regain the en-

tropy lost while being compressed by the increased concentration. This worm is fat at

c*, having the diameter of the random coil, but becomes skinnier with increased con-

centration. The worm is a string of connected ‘blobs’ which are individual random

coils of submolecules. Higher the concentration, the smaller and more numerous are

the blobs. The skinniest extreme is the KP worm, [6, 7], in which the blob is reduced

to the equivalent bond length, Kuhn’s unit of the entropic spring. The viscosity is pro-

portional to M1~M2ν until the entanglement takes place. The M1 dependence follows

the theory of Rouse-Bueche [8]. If the molecular weight is high enough, entangle-

ment can occur even in the solution with a relatively low concentration, such as 1% or

less for a polysaccharide called hyaluronan, with molecular weight exceeding a half

million. The critical value of molecular weight for entanglement depends on concen-

tration, chain stiffness, and the kind of solvent. Entanglement can occur when

c[η]>7.5, when the blobs have become the minimum size, below which they no lon-

ger would be able to behave as random coils. So, above this concentration, blobs

would compress to a higher density than the law of the most probable radial conform-

ational distribution would warrant for the molecular weight of the submolecule. The

change in the molecular weight dependence from M1 to M3.4 could occur when the

blobs are crowded together. This phenomenon could occur without the pre-requisite

of flexible polymer chains, but could occur for rigid rods or micelles. Disentangle-

ment would involve the disengagement of blobs from the neighboring molecules. A

coordinated relaxation becomes necessary, which means a simultaneous relaxation of

neighboring chains. The cooperative probability is the product of individual probabil-

ities. When the molecular weight exceeds a critical value, a higher power of M for

both relaxation time and the viscosity takes over. The reptation model [9, 10] is based

on the coupling of three modes, each of which depends on M1~M2ν which will bring

to M3~M3.6 dependence. Our model is based on the interaction of the partially over-

lapped neighbor molecules, so it is a power of the unperturbed specific volume c[η].

It involves the terms in polynomial up to {c[η]}4. If [η]~M0.85, the relaxation time and

the viscosity would be proportional to M3.4. The concentration-dependent shift factor

for the relaxation time depends on the nature of solvent, and so does the critical mo-
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lecular weight in our model. Our model also predicts the change in the relaxation

spectrum with concentration. A polymer molecule exhibits not one relaxation time

but a spectrum of relaxation times. Each mode of relaxation is related to a portion of a

chain. The relaxation times with entanglement also show a distribution. G’ and G”

are calculated based on a model for the modes of relaxation [11]. The low frequency

part of the master dynamic moduli curves for polystyrene, shown in Fig. 1, was calcu-

lated from the distribution of relaxation times published by Matsuoka [11].

There are two major modes of relaxation in the polymer melt. One is the normal

mode that is associated with the intermolecular relaxation of the entanglement re-

gime. The other is called α relaxation that is a much faster process related to the local

motion of molecules in the segmental scale. In Fig. 1, the peak in G ′′ at 1 MHz range

is this α process. The α process also is a cooperative relaxation, and the Vogel-

Fulcher equation is a manifestation of cooperativity, as will be discussed.

Whereas the normal mode relaxation was the process of disengagement of the

locked elastic blobs of the minimum size, as we proposed, the α process is the process

of the conformational relaxation of polymer chains, the smallest and fasted unit of

which is the conformer. A conformer is a bead in the polymer chain as a string of

pearls. The total conformational change is a sum total of all changes in the rotational

angles that occur at the conformer level. In the condensed state, the polymer chains

are crowded, and rotation of a conformer is perhaps interfered by the presence of a

neighbor(s). Intermolecular cooperativity in glass-forming liquids have been ana-

lyzed and theorized by many authors including ourselves [11]. All models are basi-

cally common in the feature of neighbor conformers relaxing simultaneously. Ac-

cording to these models, only when the rotations of the neighbors are synchronized,

these conformers can relax simultaneously. The difficulty for the relaxation depends

on the proximity of neighbor chains, involving more conformers for cooperativity. A

lower temperature means less space for possible free rotation of conformers.
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Fig. 1 The master dynamic moduli curves constructed from calculation for polystyrene
with molecular weight of 330,000



Let us visualize many conformers that are trying to rotate to a new angle but

can’t because the neighbors are in the way. Only once in a while, a lucky juxtaposi-

tion happens and several conformers are able to reach the new angles that are favored

under the imposed force field. At a lower temperature, not a couple but several con-

formers must relax together. If z conformers must cooperate, the probability must be

zth power of the probability for one conformer. The relaxation time of the rotation of

one conformer is controlled by the population of the activated state, in this case the

high energy state among the stable rotational angles, e.g., gauche and trans states. If

we let the relaxation time of each conformer as τ1, then the cooperative relaxation

time, τz=τ 1

z . Since τ1 is proportional to exp[∆µ/kT], τz is proportional to exp[z∆µ/kT],

from the high temperature state at T*, at which z=1 and τ=τ*.

As T is decreased from T*, z continues to increase until the conformational rear-

rangement becomes so slow, that it cannot keep up with a further drop in temperature.

Because of the apparent freezing up of the relaxation, the polymer appears to have be-

come rigid. This is the glassy state. It is a non-equilibrium state, and the entropy or

the volume cannot be specified by temperature and pressure alone. (It needs the time

element, the history.) The slower the rate of temperature decrease, further down

moves this freezing temperature. This freeze-up temperature is called the fictive tem-

perature [12]. It is important to remember that the polymer glass is in equilibrium at

its fictive temperature. Meanwhile, z grows to a larger number at lower temperature,

if the equilibrium is maintained to that lower temperature by the extremely slow cool-

ing. In the extreme, at least in theory, there is an extrapolated fictive temperature T0

that corresponds to the infinitely slow cooling. z at this temperature is infinity, be-

cause z∆µ for τz must become infinity. To speculate on the formula for z as a function

of T, there are certain conditions to be met: (1) z=1 at T*, (2) 1/z=0 at T0, (3) thermo-

dynamic extensive quantities such as entropy or free volume with and without

cooperativity must be proportional to z, and (4) the cooperative relaxation stops at T0,

while the normal quantities such as conformational entropy and van der Waals free

volume do not become zero until reaching 0 K. These four conditions are met by the

following formula,

z
T T

T

T

T T
= −

−

*

*

0

0

(1)

and when this z is substituted into τz, the Vogel-Fulcher formula [13] is obtained,

ln
( ) ( )

ln
* *

*
τ µ µ τ ∗

z z=
−

−
−

+∆ ∆
k T T k T T0 0

(2)

where ∆µ* is (T*–T0)/T
*∆µ, and τ z

* is τz (~exp[z∆µ/kT])at T*. The reference tempera-

ture can be any temperature for the above equation, e.g., replacing T* and τ z

* by Tref

and τref. This will be the Williams-Landel-Ferry equation [14] for the shift factor in

time-temperature shift of viscoelastic data, such as the frequency dependent dynamic

mechanical data,
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ref
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+ −

+23 1

2

cT T

c T T
(3)

and if Tg is chosen as the reference temperature Tref from which all experimental iso-

thermal data are being shifted, then the two parameters c1 and c2 take on the universal

values: c1

g
=13.7 and c2

g
~50 K [14]. Tg–T0 is equal to c2

g
and should be ~50 K.

Up to this point, the fictive temperature at the infinitely slow cooling, T0, has

been treated as an empirical temperature. No rationale has been given why T0 varies

from polymer to polymer. We introduce a formula for calculating T0 from the chemi-

cal structure of the conformer size.

The excess van der Waal’s volume, Vf, and the conformational entropy, s, van-

ish, not at T0 but at 0 K. When the cooperativity is introduced as an additional factor

to affect the relaxation, however, the probability of the relaxation decreases. We con-

sider that the effective entropy (the probability) and the effective free volume are

smaller than the real entropy (conformational plus volumetric entropies), and the real

(van der Waals) free volume, V–Vc, where Vc is the volume of the solid state, such as

the crystalline volume. We define the minimum entropy S0 and the minimum frac-

tional free volume f0, above which the cooperative relaxation becomes possible

(f=(V–Vc)/Vc=Vf/Vc). The effective entropy is S–S0, and the effective fractional free

volume is f–f0. It can be seen that z=S/(S–S0)=f/(f–f0) will satisfy Eq. (1), which is the

definition of z. The entropy criterion will lead to the well-known Adam-Gibbs equa-

tion [15], although our assumptions are different in that the real conformational en-

tropy will not vanish at T0. The effective free volume fraction, f–f0, can be shown to be

essentially the same as that fractional free volume introduced by Doolittle [16]. It can

be seen that ∆µ/RT⋅f/(f–f0)=∆µ/Rqαf/(f–f0), where αf=df/dT. If we let B=∆µ/Rqαf, not-

ing that ∆µ~3 kcal per mol of conformer and that αf~6×10–4 K, B is about 1, and the

Doolittle’s free volume equation, lnτ~B/fD, us obtained, where fD=f–f0. Now, at T*,

f*–f0=α f(T
*–T0), but the free volume fraction we invoke in this discussion, f, is

(V–Vc)/Vc~lnV–lnVc, so we obtain the proportionality that lnV*α(T*–T0), and this is

expressed by the equation

T T M T M* *ln ln− =0 0 (4)

where T M* ln 0 is a constant for many polymers, empirically arriving at a value of

1750 K.

From a parametric analysis of a number of polymers, we concluded that polymer

conformers, of diverse species, can relax independently only at a very high tempera-

ture, 500°C. We assigned this value for T*. Before reaching such a high temperature,

most real polymers would have degraded chemically, so T* is only a theoretical tem-

perature for calculation for the states at much lower temperatures. It can be stated

that, had they not degraded, then at 500°C, most polymer segments would be far

enough apart from the neighbors, and they would have been able to rotate with their

own relaxation time. That relaxation time is of the order of 3×10–12 s at T* of 500°C,

but rapidly comes down to nanoseconds at 100 to 200°C ranges. The extremely high
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frequency state that allows relaxation without cooperative help from neighbors is in

fact a state of infrared vibration that can jump over the energy barrier ∆µ easily for-

ward and back. It is the state in which the meaning of relaxation is lost.

Table 1 Conformer size and Tg

Polymer Repeat unit/number Tg/°C lnM

Polyethylene (linear) 14/1 –110 2.64

Polyethylene (branch) 41/2 –30 3.02

1,4 poly(butadiene) 54/3 –55 2.89

1,2 poly(butadiene) 54/2 20 3.30

polypropylene 42/2 –30 3.04

Gutta percha 68/3 –10 3.12

cis-polyisoprene 68/4 –69 2.83

Polystyrene 104/2 100 3.95

PMMA 100/2 105 3.91

A partial list for the molecular weight of a conformer and the predicted Tg is

shown in Table 1. The average molecular weight of conformers is calculated from the

chemical formula of the repeat units. For most vinyl polymers, there are two con-

formers in a repeat unit. A polymer typically consists of conformers of various sizes,

and the average is taken for the calculation of T0 from Eq. (4). For example, for poly-

styrene, M is 52, whereas for polypropylene, M is 21. Many readers who have seen

the table have raised a question why Tg of HDPE is at the γ transition, and Tg of LDPE

is at the β transition. We have made an extensive analysis of the dielectric relaxation

time for the both, and concluded that the temperature dependence of the HDPE near

–110EC follows a Vogel-Fulcher equation, unlike the γ transition of the LDPE, which

is Arrhenius. As for the Tg of LDPE being near that of polypropylene, rather than that

of HDPE, all experimental evidence points to this Tβ as a genuine Tg. Apparently, in

the amorphous regions that have ample room to move around, two methylene units

act as one conformer and, when pinned at Tg, the more restricted relaxation, such as a

crank shaft-like motion, can take place only as a typical γ relaxation. The γ transition

has a low Arrhenius type activation energy, and its intensity increases with the tem-

perature. Neither of these attributes are observed at for HDPE at its Tg. 1,4 poly(buta-

diene) is a linear polymer with three conformers per monomer unit, while 1,2

poly(butadiene) consists of two conformers of uneven sizes, one with and one with-

out the substituent group, and this results in very different values of Tg. The same

principles can be applied to long branched polymers. In general, the β transition of

amorphous polymers (γ for crystalline polymers) is the restricted relaxation, usually

pinned at the largest conformer in the repeat unit. The activation energy of the β re-

laxation would indicate the total number of conformers relaxing together, so by di-

viding this activation energy by 3~3.5 kcal will obtain the number of conformers per

repeat unit, providing a check for the estimated number for the glass transition from
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the chemical formula. More extensive table and discussion on this subject are found

in [11].

Equation (4) was based on the idea that the cooperativity entropy is the confor-

mational entropy divided by z. If Tg were calculated on the basis of conformational

entropy per mol of conformers, then the molecular size would have made no differ-

ence to the value of Tg. The reason why a larger conformer exhibits a higher Tg, as

stated in Eq. (4), is because a greater free volume is trapped at higher Tg for a larger

conformer size. A straight expansion or contraction, without a change in conforma-

tion, can also mean an increase or decrease in the probability. For the ideal gas, the

entropy related to the volume is klnV. In the liquid, the comparative volume is van der

Waals free volume. The free volume, Vf is proportional to the molecular volume and

hence to the molecular weight of the conformer. This is the basis of the proportional-

ity in Eq. (4). Like for the entropy, enthalpy, and ∆Cp, the fractional free volume of

cooperativity has a coefficient of expansion that is T*/(T*–T0) times greater than the

true van der Waals free volume. Starting down from the same value at T*, the former

drops more rapidly than the latter, and reaches zero at T0, even though there is plenty

of van der Waals free volume still left at T0. A similar situation exists between the

cooperativity entropy and the conformational entropy. The conformational entropy is

still very high near T0, as can be seen from the infrared analysis of polystyrene by

Monnerie et al. [17]. The same trend can be cited for the value of ∆Cp at Tg. It is

T*/(T*–T0) times greater than ∆Cp(=dH/dT) for the conformational enthalpy, on the

basis of mol of conformers. However, if ∆Cp is expressed on the per gram basis, it is

∆Cp times T*/(T*–T0) divided by M, in joules per g, which is essentially ln M/M, so

∆Cp per gram is smaller than ∆Cp per gram for the high Tg polymer. An example of

calculation is shown for polycarbonate in Fig. 2. ∆Cp at 420 K is about 0.33 J (K g)–1,

which agrees with data by Bair [18].

∆Cp can be calculated, starting with the conformational probability, from which

the conformational entropy, s, can be calculated. The cooperativity entropy, S, can be

calculated from dS/dT=T*/(T*–T0)qds/dT and S=s at T*. The free energy Ψ is obtained

from –∫TqdS/dTdT, and the enthalpy is obtained from Ψ+TS. ∆Cp per mol (of con-

former) is obtained from dH/dT. ∆Cp per gram is obtained by dividing it by M, the
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molecular weight of the conformer. ∆Cp is at maximum at T0. For a real polymer the

equilibrium cannot be realized near T0, but the glass transition intervenes at Tg>T0. In

thermoanalysis, Tg is measured by heating the glassy state from well below Tg up-

ward. The enthalpy of the glassy state can continue on the glassy line for some time

above the fictive temperature, because the relaxation time is very long. How far

above the fictive temperature the apparent glassy state will remain depends on the ag-

ing history. The more extensively it has been aged, the higher the apparent Tg. Thus,

the fictive temperature of a glassy state is lower when its Tg is higher. It is the fictive

temperature that must be used to estimate the relaxation properties, rather than Tg.

The former is an equilibrium parameter, which the latter is not.

From the information on the relaxation characteristics of a polymer in the amor-

phous state, it is possible to predict its dynamic mechanical behavior. Figure 3 is an

example of the isochrone for G’ at 0.1 radians per s for polystyrene with molecular

weight of 330,000. The fictive temperature of 90°C has been used. This is compared

to the data obtained by Tobolsky and Yu [19].

Beyond equilibrium amorphous state

Below Tg, an amorphous polymer is in a non-equilibrium state. This is manifest by

the physical aging of the glassy state. Physicists argue that the glassy state is not a

state because it is not in equilibrium, at which extensive quantities such as volume,

enthalpy and entropy continue to change under constant temperature and pressure

(the intensive variables). The rate for the aging process can be estimated by the use of

a rate equation in which the time constant τ is continuously changing with time. The

resulting solution is an exponential integral that resembles a stretched exponential

from a broad distribution of relaxation times, although the apparent similarity comes

about for the entirely different reasons.
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The relaxation process in the glassy state manifest the relaxation time that fol-
lows the Arrhenius formula rather than the Vogel-Fulcher formula, because the do-
main size z is independent of temperature (neglecting the aging).

Many polymers exhibit additional transitions below Tg, that are called β, γ, etc,
in the order of the descending temperatures. Low temperature relaxation processes
occur in the restricted environment of the glassy state. It may occur in the form of
intramolecular cooperative relaxation in the case of polycarbonate. It may occur in
the form of cooperativity with short substituent groups in copolymers. The general
rules of the conformer size can be applied to these cases also.

Heterogeneity

Dynamic properties have been studied in many kinds of composites. How each com-
ponent contributes to the overall behavior can be very complex, because a simple
additivity law for the stresses or strains is not convincing. However, the weighted re-
coverable strain energy has been used as the basis for predicting the behavior of com-
posites and blends [11]. Copolymers are heterogeneous in the nanometer scale. In
most cases, they are treated as the homogeneous body with the weighting of relative
fractions in the relaxation spectrum. The rheological data suggest that there are two
scales of heterogeneity. One is in the nanometer scale related to z, and the other is for
the normal mode, M*, the minimum blob size in the high concentration.

Crystalline polymers contain various types of amorphous regions and defects, so

they are a kind of composites. DMA of a typical semicrystalline polymer shows the α
loss peak that is a transition of the crystalline region into a liquid crystal-like state, the

β peak which is typically the glass transition of the amorphous region, and the γ peak

that is related to the local motion like the β relaxation in the amorphous regions.

Conclusions

The time-dependent mechanical behavior of a polymer is a manifestation of the relax-
ation behavior at the molecular level. Molecular motions are complicated by the pres-
ence of interactions between the molecules as well as within the molecule. The time
scale of the relaxation process is longer if larger parts of molecules are involved. The
detailed aspects can be studied by thermal analysis and by dynamic mechanical (and
dielectric) analysis that complement each other.

Personal tribute

For many years, Dr. Turi has organized and ably administered her well-known short courses in ther-

mal analysis. For the last several years I have been honored to lecture for Dr. Turi on dynamic me-

chanical analysis in the context of thermal analysis. Understanding of viscoelastic behavior of poly-

mers requires knowledge of their thermal behavior. Viscoelastic properties cannot be fully

understood without thermal data.

In this manuscript written to celebrate Dr. Turi’s outstanding contributions to the science of

thermal analysis, it is my intention to submit my thoughts on the temperature dependence of the

viscoelastic and rheological behavior of polymer molecules that is one of the objects of study in ther-

mal analysis.
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